ETE 710 - Materials characterization by X-ray techniques

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND				
	ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	ETE710	ETE710 SEMESTER 7			
COURSE TITLE	Materials characterization by X-ray techniques				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CRE	DITS	
Lectures		3	3		
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE	Specialized				
general background, special background, specialized general knowledge, skills development					
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course is an introduction to materials characterization techniques by X-rays.

The objective of the course is to educate the student on the elemental analysis techniques and the structural characterization of materials by X-ray radiation. The nature of the X-rays, X-ray sources and X-ray detection devices are presented. Moreover, energetic electron beams and electron detection systems are discussed. The interaction of X-rays and electrons with matter is explained thoroughly. This allows the understanding of the characterization techniques in the first principals. The student may evaluate by himself the potentiality of each technique and would gain the critical skill to decide about the optimal analytical approach for the problem to be addressed.

The course covers the most important X-ray techniques, like X-ray emission spectroscopy (X-ray fluorescence (XRF), X-ray microfluorescence (μ -XRF), particle-induced X-ray emission (EPMA, PIXE), X-ray absorption spectroscopy (EXAFS, XANES), photoelectron spectroscopy (XPS), radiography and tomography, X-ray diffraction and reflectivity. Examples of these techniques are provided, while the advantages and disadvantages are discussed. A comparison is made to

competitive characterization techniques.

The students are involved in X-ray absorption, fluorescence, and diffraction experiments. They are trained in X-ray equipment for materials characterization. They are involved in data acquisition problems, analyzing experimental data, and interpreting the results. In the context of the analysis, they are trained in the use of simulation programs.

General Competences						
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma						
Supplement and appear below), at which of the following does the course aim?						
Search for, analysis and synthesis of data and information,	Project planning and management					
with the use of the necessary technology	Respect for difference and multiculturalism					
Adapting to new situations	Respect for the natural environment					
Decision-making	Showing social, professional and ethical responsibility					
Working independently	and sensitivity to gender issues					
Team work	Criticism and self-criticism					
Working in an international environment	Production of free, creative and inductive thinking					
Working in an interdisciplinary environment						
Production of new research ideas	Others					

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Team work
- Criticism and self-criticism
- Respect for the natural environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

The course includes theoretical lessons and laboratory exercises. The course content is concentrated in the following sections:

- 1. The nature of X-rays. X-ray production and detection.
- 2. X-ray interaction with matter.
- 3. Interaction of electrons with the matter.
- 4. Atomic orbital atomic structure and ionization. Photonic and non-photonic excitations.
- 5. X-ray emission spectroscopy: X-ray fluorescence (XRF), electron ionization micro-analysis, X-ray total fluorescence (TXRF), X-ray particle-induced emission (EPMA, PIXE)
- 6. X-ray absorption spectroscopes (EXAFS, XANES)
- 7. Photoelectron Spectroscopy (XPS)
- 8. X-ray radiography. Tomography.
- 9. X-ray diffraction.
- 10.X-ray reflectivity.
- 11. Programs of simulation of experimental methods and analysis of experimental data.
- 12. Complementary techniques (e.g. Auger spectroscopy, electron diffraction, neutron reflectivity).
- 13. Laboratory experiments (Beer-Labert law, X-ray emission spectroscopy, X-ray absorption spectroscopy)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance	In class, lectures	
USE OF INFORMATION AND	Electronic platform e-course	
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching, laboratory		
education, communication with students		
TEACHING METHODS	Activity	Semester workload

The manner and methods of teaching are	Lectures	26	
described in detail.	Fieldwork	13	
fieldwork study and analysis of	Homework	13	
bibliography, tutorials, placements, clinical	Self-study	23	
practice, art workshop, interactive teaching,			
educational visits, project, essay writing,			
artistic creativity, etc. The student's study hours for each learning			
activity are given as well as the hours of non-			
directed study according to the principles of			
the ECTS	Course total	75	
	Lourse total	/5	
STUDENT PERFORMANCE			
EVALUATION			
Description of the evaluation procedure	I ANGUAGE OF EVALUATION: Greek		
Language of evaluation, methods of	LANGUAGE OF EVALUATION. GIVER		
evaluation, summative or conclusive,	METHOD OF EVALUATION.		
multiple choice questionnaires, short- answer questions, open-ended questions	METHOD OF EVALUATION:		
problem solving, written work.			
essay/report, oral examination, public	(i) Final oral and written examination (ii) Public representation examination		
presentation, laboratory work, clinical			
examination of patient, art interpretation,	(iii) Laboratory wor	k	
other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible			
to students.			

(5) ATTACHED BIBLIOGRAPHY

-Suggested bibliography:

- Handbook of Practical X-Ray Fluorescence Analysis, Burkhard Beckhoff, Birgit Kanngießer, Norbert Langhoff, Reiner Wedell, Helmut Wolff, Springer ISBN: 978-3-540-28603-5
- Materials Characterization, ASM International, Vol. 10
- Elements of Modern X-Ray Physics, Jens Als-Nielsen, Des McMorrow, John Wiley & Sons, ISBN:0-471-49857
- Elements of X-Ray Diffraction, B.D. Cullity, Addison-Wesley Publishing Company, ISBN:0-201-01230-8

--Related academic journals:

- X-ray Spectrometry
- Journal of Analytical Atomic Spectrometry
- Journal of Synchrotron Radiation
- Analytical Chemistry
- Chemical Physics
- Nuclear Instruments and Methods in Physics
- Spectrochimica Acta Part B: Atomic Spectroscopy